Application of Numerical Inverse Laplace Transform Algorithms in Fractional Calculus
نویسندگان
چکیده
It is known that the Laplace transform is frequently used to solve fractional-order differential equations. Unlike integer-order differential equations, fractional-order differential equations always lead to difficulties in calculating inversion of Laplace transforms. Motivated by finding an easy way to numerically solve the fractional-order differential equations, we investigated the validity of applying numerical inverse Laplace transform algorithms in fractional calculus. Three numerical inverse Laplace transform algorithms, Invlap, Gavsteh and NILT , were tested using Laplace transforms of fractional-order differential equations. Based on the comparison between analytical results and numerical inverse Laplace transform algorithm results, the effectiveness and reliability of numerical inverse Laplace transform algorithms for fractional-order differential equations was confirmed.
منابع مشابه
Yang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order
This study outlines the local fractional integro-differential equations carried out by the local fractional calculus. The analytical solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application t...
متن کاملInverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملTransient MHD Convective Flow of Fractional Nanofluid between Vertical Plates
Effects of the uniform transverse magnetic field on the transient free convective flows of a nanofluid with generalized thermal transport between two vertical parallel plates have been analyzed. The fluid temperature is described by a time-fractional differential equation with Caputo derivatives. Closed form of the temperature field is obtained by using the Laplace transform and fractional deri...
متن کاملFractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties
In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi mod...
متن کاملLaplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel
A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...
متن کامل